Parallelizing the Phylogeny Problem

Jeff A. Jones

Report No. UCB//CSD-95-869
December, 1994

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Report Documentation Page

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number.

1. REPORT DATE
DEC 1994

2. REPORT TYPE

3. DATES COVERED
00-00-1994 to 00-00-1994

4. TITLEAND SUBTITLE

Parallelizing the Phylogeny Problem

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical

Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR’'S REPORT

NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The problem of determining the evolutionary history of speciesin the form of phylogenetic treesis known
as the phylogeny problem. Drawing upon a technique known as character compatibility and an algorithm
for a subproblem from Agarwala and Fer nandez-Baca, modified accor ding to a suggestion from Lawler,
we present an algorithm and a proof of correctness. Based on experimental evidence, we have designed a
highly-tuned sequential implementation. We also present an efficient parallel implementation based on a

new distributed data structure.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a REPORT
unclassified

b. ABSTRACT
unclassified

c. THISPAGE
unclassified

17. LIMITATION OF
ABSTRACT

Same as
Report (SAR)

18. NUMBER
OF PAGES

33

19a. NAME OF
RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Parallelizing the Phylogeny Problem
by

Jeff A. Jones

University of California at Berkeley, 1994

This report was submitted to the Department of Electrical Engineering and Computer
Sciences in partial fulfillment of the requirements for the degree of Master of Science
at the University of California at Berkeley. The project was supervised by Katherine A.
Yelick and was supported in part by DARPA contract DABT63-92-C-0026, by DOE grant
DE-FG03-94ER25206, and by NSF Grants CCR-9210260 and CDA-8727788.

1 Introduction

Determining the evolutionary history of species is fundamental to molecular biology. The
problem of determining the evolutionary history for a set of species is known as the phylogeny
problem. Evolutionary history is typically represented by a tree, with the root being the oldest
common ancestor and the children of a node being the species that evolved directly from that
node. A path from the root to a species shows the evolutionary path of that species. The
phylogenetic tree shows relationships between species and is an important tool in the branch of
biology known as systematics. It is valuable in itself, but also provides clues about migration
patterns, climate changes, the formation of the earth, and many other mysteries of the diversity
of life.

Techniques for sequencing proteins and nucleic acids provide the foundation for the phy-
logeny problem. Molecular sequences contain precise, quantitative information present in a
wide variety of organisms. Solving the phylogeny problem means deriving, from a given set of
molecular sequences, an evolutionary history in the form of a phylogenetic tree.

Unfortunately, deriving phylogenetic trees is often prohibitively expensive. We used careful
software design and parallel processing to solve the phylogeny problem quickly.

Many methods for solving the phylogeny problem have been explored, including parsimony,
compatibility, maximum likelihood, and distance matrix methods [3]. We focus on the method
known as character compatibility [7], which we describe formally in Section 2. The character
compatibility method searches a large space, so we have developed a number of heuristics
for bounding the search. We demonstrate that the heuristics have a considerable impact on
performance.

Solving the character compatibility problem requires, as a subproblem, the solution of the
perfect phylogeny problem, a restriction of the general phylogeny problem. Character com-
patibility solves the general phylogeny problem by combining the solutions of several perfect
phylogeny problems. Our character compatibility implementation relies on an algorithm due
to Agarwala and Ferndndez-Baca [1] to solve the perfect phylogeny problem. We give a new,
simpler description and proof of correctness of this algorithm in Section 3.

Deriving an efficient implementation from an efficient algorithm requires care. Maximum
performance requires appropriate data structures and use of heuristics based on expected inputs.
In Section 4, we describe our sequential implementation, including the important data structures
and our techniques for improving performance of both the character compatibility problem and
the perfect phylogeny problem. We present timing results for our implementation.

Finally, we describe our parallel implementation on a distributed memory multiprocessor in
Section 5. The important decisions in the implementation concern the sources of parallelism
and the amount of data sharing. Multiple levels of parallelism are available, but we use only
one. We also limit the amount of data sharing to simplify the implementation. We conclude
the section by suggesting improvements to the implementation.

2 The Character Compatibility Problem

Phylogenetic trees are constructed by considering the characters exhibited by the species. The
characters can be skeletal structures, coloring, or other physical characteristics. More often,
the characters are elements of molecular sequences. We represent a species u with a vector of
character values, u[l],..., u[cmqz], Where ¢yqp is the number of characters to be considered. In
the case of molecular sequences, each element of this vector is a nucleotide or amino acid.

A character is compatible with a phylogenetic tree if no value for that character arises
more than once along any path in the tree. For example, if a species loses some trait, such as
opposable thumbs, it cannot regain it. A solution of the character compatibility problem is a
phylogenetic tree with the maximum number of compatible characters.

A perfect phylogenetic tree for a set of species and a given set of characters for those species
is a phylogenetic tree compatible with all the characters. Note that the phylogeny problem does
not find roots for the trees. Perfect phylogenetic trees only indicate the relative evolutionary
distances between species. The root must be calculated by considering other factors, such as
the ages of the species. Formally, we define a perfect phylogenetic tree, or perfect phylogeny
for short, for a fixed set of characters, as follows:

Definition 1 Given a set of species S and a set of characters C, an undirected tree T is a
perfect phylogenetic tree for S with C if

1. § CV(T), the vertices of T
2. Fvery leaf in T is in S

3. For all paths uo,. .., ux, for all characters ¢ € C, if uo[c] = ug[c], then for alli, 0 < i <
k,ui[e] = uolc]

If a perfect phylogeny exists for a set of species with a particular set of characters, we say that
the set of characters is compatible.

To illustrate the definition, consider Figure 1, in which we consider a set of n = 3 species,
{u,v,w}, with three characters each (c;q = 3). Each character takes on one of up to 4 possible
values. Tree a is not a perfect phylogeny because it violates condition 3 in the definition:
u[2] = w[2], but v[2] # u[2]. Tree b satisfies all three conditions, as does tree c. Notice that the
perfect phylogeny for a given set of species may not be unique.

Tree ¢ contains the species [1, 1, 3], which was not a member of the original set. The tree is
still a perfect phylogeny, however, because all of the leaves appear in the original set. In fact,
some sets of species have no perfect phylogenies containing only members of the set, indicating
the existence of an unknown intermediate species, or “missing link,” in the evolutionary history
of the set.

To make the example more concrete, consider u and w to be species with opposable thumbs,
and v to be a species without this trait. Tree a is not a valid phylogeny because, in some
evolutionary path, opposable thumbs were lost and then reappeared.

Ideally, we would like to find a perfect phylogeny for our original set of species with the
original set of characters. That is, we hope that the entire set of characters is compatible.
Unfortunately, this is not true for many sets of species. Table 1 shows an example. Even
adding new internal vertices does not produce a perfect phylogeny. Because a character set
may be incompatible, the character compatibility method searches for the largest compatible
subset. If the subset is large, the corresponding perfect phylogeny will be a good estimate of
the evolutionary history of the species.

Solving the character compatibility problem requires determining whether or not each subset
of characters is compatible. We use the algorithm of Agarwala and Ferndndez-Baca [1], which we
describe in Section 3, to determine compatibility. Examining all possible subsets (an exponential
number) in turn is extremely time-consuming, however. Fortunately, we can reduce the number
of subproblems examined with the following lemma.

Lemma 1 Let § be a set of species, and let C; and Cy be subsets of the characters of the
species in S, such that Cy C Cy. If Cy is compatible, Cy is compatible.

Figure 1: Examples of perfect phylogenetic trees.

ull 1
vil 2
w2 1
x 2 2

Table 1: Set that does not have a perfect phylogeny.

/////111\\\\\

011 110

101
010

001 100

AN

000

Figure 2: Lattice for the 3 character case.

Figure 3: Example frontier.

Proof. If C, is compatible, there exists a perfect phylogeny T for S that is compatible with
every member of C;. Because any member of C; is a member of C, it must be compatible
with T, and therefore C; is compatible.
O

Once we find a compatible set, we know that all subsets of that set are also compatible.
Similarly, if we find an incompatible set, we can exclude all supersets of that set from consid-
eration. We can consider the subsets as being partially ordered by the subset relation, whose
lattice is shown in Figure 2, for the 3 character case. Then, the goal of the character compat-
ibility problem is to find a frontier of compatible subsets in this lattice. Figure 3 shows the
result for the species in Table 2. Compatible subsets are circled in dashed lines, and members
of the compatibility frontier are circled in solid lines. Section 4 will discuss the performance
ramifications of this structure.

DN = N =

1
1
1
1

Ko < e
N DN bt

Table 2: Another example set of species.

3 The Perfect Phylogeny Problem

We focus now on solving the perfect phylogeny problem. We fix the set of characters and derive
an algorithm that decides if a perfect phylogeny compatible with that set exists.

The general form of the problem is NP-complete [2]. Possible approaches to obtaining
a polynomial-time algorithm are fixing the maximum number of characters and fixing the
maximum number of possible values per character to a constant, r,,,,. Using the first ap-
proach, it has been shown that the problem may be solved in time O(n™*1), where n is the
number of species and m is the number of characters [8]. We describe an algorithm using
the second approach, due to Agarwala and Ferndndez-Baca, which achieves a time bound of
O(2%*mez(nm3 + m*)). This approach promises to be more practical, because typical values
of Trmq are 4 for nucleotide sequences and 20 for proteins, but the number of characters in a
sequence can be in the thousands. :

The algorithm divides the set of species into smaller sets, and proceeds recursively on
the smaller sets. The two methods for dividing the set are vertex decomposition and edge
decomposition. Vertex decomposition divides the species into two subsets so that we can build
a perfect phylogeny with some member of the original set of species as an internal vertex.
The internal vertex will be on every path between members of different sets, so condition 3 of
Definition 1 will restrict the possible candidates. For some sets of species, however, no species
satisfies these requirements, and we resort to edge decomposition, which corresponds to adding
a new species.

3.1 Vertex Decomposition

To describe vertex decomposition, we first introduce the notions of common character values
and the common vector between two sets of species.

Definition 2 For two sets of species Sy and S3, and a character c, if there exists u; € 51 and
ug € S2 such that uy[c] = us[c], then ui[c] = uz[c] is @ common character value between $; and
Sy for c.

Definition 3 If there is at most one common character value between Sy and S, for each
character c, then the common vector for Sy and S; is a vector cv(Sy, Sq) such that

cv(S1, S2)[e] = Te if . is the common character value for ¢
1225 unforced if there is no common character value for ¢

If there is more than one common character value between Sy and S for some character, then
we say the common vector is not defined.

In this definition, “unforced” is a new character value that requires special treatment:

Definition 4 We say two vectors u and v are similar if, for all ¢, either u[c] = v]c], ufc] =
unforced, or v[c] = unforced.

If a set S contains species that have unforced character values, then we say a tree T is a perfect
phylogeny for S if and only if T is a perfect phylogeny for some set $’, where S C §’ and S’
contains, for every species in 5, a species which has a similar, fully-forced character vector.
Such sets of species arise because of edge decomposition, described in Section 3.2.

Consider all pairs (S1,.52), such that § = §; U S; and §; N S, = @. If the common vector
cv(51,52) is defined, we call the pair (S, S9) a split. If, for one of these splits, cv(S5y,S7) is

5

similar to some species u € S, the split is called a vertex decomposition. Intuitively, finding
a vertex decomposition corresponds to finding a member of the set of species that can be an
internal vertex of a perfect phylogeny for the set. The restriction that u be compatible with
the common vector between the two sets derives from the fact that in the perfect phylogeny, u
will be on a path between any members of opposing sets. The following lemma formalizes this
statement, and shows how a vertex decomposition can be used to find a perfect phylogeny.

Lemma 2 Assume that a set of species S has a vertez decomposition (S1,52), where u € S is
the species which is similar to cv(S1,S52). Then, S has a perfect phylogeny if and only if both
S1U{u} and Sy U {u} have perfect phylogenies.

Proof. If perfect phylogenies, T} and T3, exist for S; U {u} and S, U {u}, respectively, we can
construct a perfect phylogeny for § by simply merging the nodes for u in T} and T,. That is, we
produce a new tree T" which contains all the vertices and edges of T} and T,. To guarantee that T
is a perfect phylogeny, however, we must first modify 7} and T3 to ensure that cv(V(T1), V(T3))
is similar to cv(S$1,52). Only vertices that are not in the original set of species and that have
character values that are not “forced” by condition 3 of Definition 1 can violate this condition.
We can modify these character values to be equal to that of some neighboring vertex that is a
member of S, however, which solves the problem.

If S has a perfect phylogeny T, we can produce a perfect phylogeny for any subset S’ of S ,
by removing leaves of T' that are not members of §’. Therefore, if either $; U {u} or S, U {u}
does not have a perfect phylogeny, neither does .

]

To construct a perfect phylogeny for S, we look for a vertex decomposition and proceed
recursively on the subsets. Finding a perfect phylogeny for a set with 1 or 2 elements is trivial,
so the recursion terminates. If at any point we fail to find a phylogeny for a subset, we know
that none exists for 5.

Figure 4 shows the process of finding a perfect phylogeny for a set of five species. In step
A, the common vector between S; = {v,u,w} and S, = {z,y} is [2, 3], which is similar to v.
We look for perfect phylogenies for {v,u,w} and {v,z,y}. In the figure, the dashed circles in
each step indicate the species used to connect the two subtrees for that step.

In step B, we decompose on w and v in their respective sets, leaving a collection of subsets
of size 2, which have obvious perfect phylogenies. A construction for a perfect phylogeny for
any set of three species also exists, but we avoid its use here for simplicity. To complete the
process, we connect the subtrees into successively larger trees by connecting the appropriate
vertices.

Unfortunately, vertex decomposition does not suffice for all sets of species. For example,
Figure 5 shows a set of species that has no vertex decomposition, but has a perfect phylogeny.
Notice that, as in tree ¢ of Figure 1, we have added a new vertex with character vector (1,1,1].
As noted above, a vertex decomposition requires a member of the original set of species that
can be an internal vertex of the perfect phylogeny. The set in Figure 1, however, has no such
species, which explains the necessity for the added species.

To account for the necessity of adding vertices, we extend the perfect phylogeny procedure.
When the search for a vertex decomposition fails, we search for an edge decomposition.

3.2 Edge Decomposition

For vertex decomposition, we make use of splits that have common vectors that are similar to
one of the species. But, if no such similar species is present, the split may still be useful if it is

KX E < e
SN
B W WR

V.

"
0 & | @D

C) w—v |W—u | Vx| vy
D) e \—\‘ o \
u X Y
E) u—w v\ Y
X

Figure 4: Vertex decomposition example.

v: 112 O L ®
w: 121

Figure 5: A perfect phylogeny for a set with no vertex decompositions.

a c-split:

Definition 5 A c-split is a split (S1,S3) such that for at least one character ¢, there is no
common character value between S, and Ss.

To understand the definition of a c-split, assume that the set of species S has a perfect
phylogeny T'. Without loss of generality, assume the vertices of T are distinct (we could simply
merge identical nodes). For any edge {u1,u2} of T, consider Ty and T3, the subtrees containing
at u; and uy, respectively. Let 57 and S; be the members of S that are vertices of 7} and
T3, respectively. Because T is a perfect phylogeny, (S1,52) can be shown to be a c-split, as
follows. The common vector between S; and S, is defined because there is only one edge,
namely {uy,uz}, connecting S; and S, so if there were more than one common character value
between S; and §;, T could not be a perfect phylogeny. And, because u; and u, are distinct,
u1[c] # ug[c] for some character ¢, so there can be no common character value between S; and
S for c. Therefore, if a set S has a perfect phylogeny, it must have a c-split for every edge in
the tree.

This fact suggests a possible algorithm for finding a perfect phylogeny. For all c-splits
(51, 52) of S, we could attempt to find perfect phylogenies for Sy and S,. If any c-split has two
such perfect phylogenies, we can build a perfect phylogeny for S. If no c-split does, then no
perfect phylogeny exists for S by the reasoning above.

Unfortunately, the naive algorithm relying on a recursive search takes time exponential in the
number of species. The algorithm is unacceptable because the number of species in a problem
instance tends to be large. Nevertheless, with some modification, we can use memoization to
reduce the running time to be polynomial in the number of species.

We can build all perfect phylogenies for § from perfect phylogenies for subsets with a
particular form.

Definition 6 Let S be the original set of species. For any subset Sy of S, define §; = S — S;.

Definition 7 For an original set of species S, if (S, 81) is a split and the set S1U {cv(51,581)}
has a perfect phylogeny, we call this tree a subphylogeny for S; in S.

The idea behind this definition is that the vertex of the subphylogeny corresponding to
cv(S1,51) can be used to connect to a perfect phylogeny for the rest of the set. The lemma
below explains the details. Intuitively, it states that we can build a perfect phylogeny for any
subset S’ such that ($”,) is a split by finding subphylogenies only for subsets S; where (51, 51)
is a c-split.

Lemma 3 For any split (S',S") of the original set of species S, S’ has a subphylogeny if and
only if there ezists a c-split (S1,52) of S’ such that:

1. (51, 51) is a c-split
2. cv(51, S2) is similar to cv(S’, 5")
3. S1 has a subphylogeny

4. S2 has a subphylogeny

Figure 6: Edge decomposition example.

Proof. First, assume we have such a c-split. Let T} and T3 be the subphylogenies for S; and
Sq, respectively, and let cv; and cv, be the vertices in the subphylogenies corresponding to
cv(S1,8,) and cv(S2, 82), respectively. Note that cv(S1,51) must be similar to cv(S2, S9), and
both of these must be similar to cv(S’, §7). This follows, after tedious case analysis, from the fact
that cv(S1, S2) is similar to cv(S’, 5"). We can construct a perfect phylogeny as follows. Let cv
be a vertex such that cvle] = cv(5’, §)[c] if cv(S’, §")[c] is forced, otherwise cvle] = cv(S1, S2)[c]
if cv(S$1, 2)[c] is forced, and otherwise cv[c] = cvq[c]. Now, connect cvy and cv, to cv, as shown
in Figure 6.

This tree is a perfect phylogeny. Otherwise, there must exist nodes a,b € V(T) such that,
for some c, a[c] = b[c] and there exists a node d on the path between a and b with d[c] # a[c].
Clearly, we cannot have both a and bin V(T}), because then 7; would not be a perfect phylogeny.
Similarly, we cannot have both a and b in V(T3). Therefore, we have three cases: a € V(Ty)
and b € V(T3); a € V(T1) and b = cv; and a € V(T3) and b = cv. In the first case, we must
have a[c] = blc] = cvi[c] = cvale] = cv[c], because cv(Sy, S3)[c] = a]c], and cv(S51, 52) is similar
to cv. Here, we assume that if a vertex in V(T}) or V(T3) is not a member of the original set
of species, then each of its character values is the same as the character value of some species
in the original set. Note that cv satisfies this criterion. So, all nodes d on the path are either
between @ and cvy, in which case d[c] = a[c], because Ty is a perfect phylogeny, between b
and cvy, in which case d[c] = b[c] because T is a perfect phylogeny, or are cv, in which case
d[c] = a[c] because cv|c] = a[c]. The remaining two cases are similar.

Now, to prove the other direction, assume that we have a perfect phylogeny T for S’ U
cv($’,8"). Assume, without loss of generality, that all nodes of T are distinct. Let cv be the
vertex of T corresponding to c¢v(S$’,5"), and let = be any neighbor of cv. Remove the edge
{z,cv}, and let Ty and T be the two connected components. Assume 2z € V(T}), and let
S$1=V(T1)nS" and S; = V(T3) N §'. Clearly, (S1,52) is a c-split, because it corresponds to
the deletion of the edge {z,cv}. Figure 7 depicts the situation. We now show that each of the
four conditions hold.

1. To show that (S;,5) is a c-split, we need to show that the common vector between S;
and S is defined and that it is unforced in at least one character. The common vector is
defined because if there is a common character value between S 1 and &, cv has that value
for that character, because it is similar to cv($’, § "). Therefore, if the common vector is
defined, it must also be similar to cv(5’, §'). In effect, cv represents the elements of S in

Figure 7: The situation

T. Also, if there is a common character value between S; and S, cv has that value for
that character because in T', cv is between any species in S; and any species in So,and T
is a perfect phylogeny. In other words, if the common vector is defined, it must be similar
to cv(S1, §2). The result is that there cannot be more than one common character value
between $; and Sj, because otherwise c¢v would have two values for the same character.
Therefore, the common vector cv(Sy,51) is defined.

Now we will show that this common vector is unforced in at least one character by
contradiction. Assume that cv(S1,51) is forced for all characters. As shown above, this
vector is similar to cv(S’, §'), which is similar to cv. Because cv(Sy, 81) is fully forced, it
is therefore equal to cv. However, in T, z lies between all species in S; and cv. T is a
perfect phylogeny, so ¢ must be equal to cv also. This contradicts our assumption that
the nodes of T are distinct. Therefore, the common vector is unforced in at least one
character.

2. Next, we must show that cv(Sy, S3) is similar to cv(S’, §”). This follows easily from the
observation that any path from a member of §; to a member of Sy in T passes through
cv. Therefore, cv(S7, S2) is similar to cv, which is fully defined and similar to cv(S’, 8,
so cv(S1, S7) is similar to cv(S’, 5").

3. Ty is clearly a perfect phylogeny for $; U {z}, so to show that S; has a subphylogeny,
we only need to show that z is similar to cv(S7,5;). We know, from above, that both
cv(§’,8") and cv(Sy, S;) are similar to cv, which implies that cv(S1, S1) is similar to cv. If
cv(S1, 1) is forced for some character ¢, some species u. € §7 exists such that u.[c] = cv]c].
Therefore, because z lies between u. and cv in T, z[c] = cv[c] = cv(Sy, §1)[c]. = is equal
to cv(Sy, .§1) wherever cv(57, 5'_1) is forced, which implies that z is similar to cv (81, 51).

4. Showing that S; has a subphylogeny is similar to the above argument: T, is a perfect
phylogeny for S, U {cv}, and cv is similar to cv(Ss, 7).

O

By the preceding lemma, the procedure Subphylogeny in Figure 8 determines if a perfect
phylogeny exists for a subset S/, where (.5”, §') is a split. Subphylogeny searches for a c-split of

10

Subphylogeny(S’ cv)

if |9 =1
return TRUE
else
for each c-split (.51,5;) of S’ {
if (cv(81, 52) is similar to cv) and either (57, 57) or (52, S7) is a c-split)
if Subphylogeny(51, cv(S1,52) ® ¢v) and Subphylogeny(Sz, cv(S1,52) ® cv)
return TRUE

}
return FALSE

Figure 8: A simple procedure for the perfect phylogeny problem.

the set that satisfies each of the four conditions in the lemma. Notice that, for efficiency, the
procedure calls itself only when all other conditions are met. Note that @ denotes the merging
of similar vectors, defined as follows:

alc] if a[c] is forced
(a®b)[c] = bc] if b[c] is forced

unforced otherwise

Showing that cv(S1,51) = cv(S1, S2) @ cv(S’,) is not difficult.

The more efficient procedure shown in Figure 9 reuses previously computed information
about the existence of subphylogenies. Whenever Subphylogeny2 determines the existence or
nonexistence of a subphylogeny for a subset, it places that result in a store of results. It checks
the store before working further on a subset.

Because Subphylogeny2 never examines a set S/, where ($’,5) is a c-split, more than
once, we can bound its running time by estimating the number of c-splits of a set of species.
Specifically, there are at most m2"me==1 c-gplits, where m is the number of characters and 7,4
is the number of values per character. The reason is that there is at most one c-split for each
subset of the values of each of m characters. Each character has 2"ma= subsets of values, and
half of these are duplicates. Therefore, as long as Subphylogeny2 requires only a polynomial
amount of work to find each subphylogeny, it will be polynomial in the number of species
and the number of characters per species. It will be exponential in the number of values per
character, but this weakness is acceptable because the number of values per character is small
for molecular sequences, as mentioned above.

4 Sequential Implementation

Transforming an algorithm into an efficient implementation requires careful design. In this
section, we describe our sequential implementation.

11

Subphylogeny2(S’, cv)

if |8 =1
return TRUE
else if a result for $’ is in the store
return the previously computed result
else
for each c-split (5,53) of S’ {
if cv(51, 82) is similar to cv and either (S, 5;) or (82, S;) is a c-split
if Subphylogeny2(S1, cv(51,52) @ cv) and Subphylogeny2(S,, cv(S1,52) & cv)
record TRUE for S’ in the store
return TRUE
}
record FALSE for S’ in the store
return FALSE

Figure 9: An improved algorithm for the perfect phylogeny problem.

4.1 Exploring the Space of Subsets

Recall that the character compatibility problem is the problem of finding the largest subset of
characters that has a perfect phylogeny. We must explore the space of all subsets of the original
set of characters, using the perfect phylogeny procedure to decide success or failure for each
subset. Fortunately, we can eliminate many subsets from consideration. Lemma 1 is our tool
for limiting the character compatibility search space.

The conceptually simplest technique for attacking character compatibility is to enumerate
all subsets of the original set of characters and step through them one by one, calling the
procedure from Section 3 each time. This algorithm is horribly inefficient, however, because it
uses none of the information obtained from the solution of other subsets.

As a first refinement, we maintain a store of results from previously examined subsets. We
step through the subsets as before, but before calling the perfect phylogeny procedure for a
subset ', we search the store for any supersets of S’ already found compatible and for any
subsets of 5’ already found incompatible. We refer to these two cases as successes and failures,
respectively. In both cases, we avoid resorting to the perfect phylogeny procedure.

This improved algorithm is a marked improvement, but we can eliminate much more redun-
dant work. To estimate the magnitude of the problem, we note that a 60 character problem
has 290 subsets of characters. Even if each was resolved in the store, and the lookup time was
only 1ns, the total time would still be more than 36 years. Because we want to solve problems
with significantly more than 60 characters within a reasonable amount of time, we must find a
way to avoid all computation for an enormous number of subsets.

The lattice in Figure 2 provides the inspiration. Notice that, by Lemma 1, if a subset is
not compatible, all of its descendents in the lattice must also be incompatible. Similarly, if a
subset is compatible, all of its ancestors must be compatible. We can begin at either the top or
the bottom of the lattice and continue along each branch until we reach a failure or a success,
respectively.

12

Figure 11: The recursive structure of binomial trees.

From the lattice, we remove edges to obtain the search tree shown in Figure 10. The tree
corresponds to a bottom-up search: we begin with small subsets and progress to larger subsets.
The search tree for top-down search is the mirror image of the bottom-up tree. Trees with this
structure are known as binomial trees [5, 9]. Binomial trees have the recursive structure shown
in Figure 11. Figure 12 shows an example with 4 characters.

Notice that a depth-first and right-to-left search of the tree in Figure 12 visits the subsets
in lexicographic order. This order visits a subset only after visiting all subsets of that subset.
Therefore, the use of the store for failures is perfect in the sense that no subset that has a
subset that failed requires the perfect phylogeny procedure. For the same reasons, checking the
store for supersets that have succeeded is unnecessary. Similar observations apply to top-down
search.

Based on experimental evidence, we have chosen bottom-up search. Intuitively, we believe
that most subsets of characters are incompatible, so bottom-up search finds dead ends more
quickly and explores fewer nodes of the tree. Experimental data supports our intuition. We
compared the top-down and bottom-up approaches for 15 problems with 14 species and 10

0000

1000

0100 0010 0001

1100

1010

1011

1001 j/o101 0110 0011

1101 1110

1111

Figure 12: A binomial tree with 4 characters.

13

fraction of subsets

T T T top, explored
" top, unkiiied

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

1 | |
5.00 10.00 15.00

characters
Figure 13: Fraction of subsets explored for top-down search.

characters, all taken from mitochondrial third positions in the D-loop region [4]. The top-down
version explored an average of 1004 subsets, and the bottom-up version explored an average
of 151.1. Note that the search tree contains only 1024 nodes. Furthermore, only 3.22% of
subsets were resolved by accessing the store for top-down search, but for bottom-up, 44.4%
were resolved in the store. The difference is more severe for problems with more characters, as
shown in Figures 13 and 14. Bottom-up search is the clear winner.

Next, we compare the different strategies for attacking the character compatibility problem:
enumerating the subsets without looking in the store (enumnl), enumerating and looking in
the store (enum), bottom-up search without looking in the store (searchnl), and bottom-up
search with store lookups (search). The timings shown in Figures 15 and 16 were taken on an
HP715/64, using the same data sets as above. The data show the superiority of bottom-up
search with store lookups.

Also, we observe here that the running time appears to be exponential in the number of
characters. We expect this for the simple enumerate without lookup strategy, because we must
examine all subsets of the set of characters. Unfortunately, the improved search strategies also
have exponential running times. The choice of search strategy can only improve the running
time by a constant factor.

4.2 Vertex Decomposition

As noted in Section 3, vertex decomposition is unnecessary for the correctness of the perfect
phylogeny algorithm. Figure 17 shows the performance of the character compatibility imple-

14

fraction of subsets

1.00 - I T T _] bottom, explored
bottom, unkilled

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

characters

Figure 14: Fraction of subsets explored for bottom-up search.

15

seconds
I ' T enumnl|
200.00 — ' I Ittt
! ' enum
' L ettt it pii
180.00 — ' l _sEafcfuil_ }
: K search
160.00 | ; [
Il’ ,l
140.00 — : ! R
ll [
II U
120.00 — , ' —
. i
I’ !
100.00 — K N —
ll !
i I
80.00 — ," ‘l —
'll 1
60.00 |- ;. ! _
'l’ I\ 7’
/, 1N P
40.00 — . 1oL —
1
1
20.00 — . T 4
deozozs’] leee==- - I ' I l characters
15.00 20.00 25.00 30.00 35.00 40.00 45.00
Figure 15: Times for the various search strategies.
seconds
5F I — enumnl
.
2 ; .7 —| searchnl
'I 4 | e - - -
L L search
le+02 — Pid 4 —
I’ 4
., ’ , 4
5 NP .
l' i
2 ’,’ _ < —
r" 4 -7
le+01 |- . —
. /,
5~ // —
4
2 e e -
I:: - , -,
le+00 — —
¢ -7
51 ¥ P —
, 4
, 7/
2 | 1 | | | L
20.00 25.00 30.00 35.00 40.00 45.00

16

characters

Figure 16: Times for the various search strategies on a logarithmic scale.

seconds x 103

65.00 - § | without
60.00 "

55.00
50.00

I

45.00 ;
40.00 | P
35.00 '

30.00 - .

I

25.00 .
20.00 '

15.00

I

10.00
5.00 -

0.00

| | | |
20.00 40.00 60.00 80.00

characters

Figure 17: Average times with and without vertex decompositions.

mentation with and without vertex decompositions, and Figures 18 and 19 show the number of
vertex and edge decompositions, respectively, found by each of the implementations.

4.3 Representation of the Store

Until now, we have considered the store at an abstract level. In this section, we discuss the
design decisions in our implementation.

Storing successes and storing failures require different operations, so we separate them
logically into two abstract data types, a FailureStore and a SolutionStore. Because we have
chosen bottom-up search, we only use the FailureStore, as noted above.

The FailureStore must support the following operations:

o Insert(S’): insert a new set S’ of characters into the store
e DetectSubset(S’): determine if any subsets of §’ are in the store.

We consider two representations for the FailureStore: a linked list and a trie, each containing
sets of characters.

The linked list is a simpler implementation: Insert simply adds the set to the tail of the list,
and DetectSubset scans the list looking for subsets. However, because the number of failures

17

vertex decompositions

450 ' ! ' -| with

without

4.00 - _
3.50 -

3.00 -

I

2.50

2.00

1.50 - _

1.00 — _

I

0.50

0.00 - -
| | | |

20.00 40.00 60.00 80.00

characters

Figure 18: Average number of vertex decompositions found per perfect phylogeny problem.

18

edge decompositions

90.00 | l l] “with
ssol e | "witheut
8.00 |- i

7.50 - m....."' :
7.00 — |
6.50 |
6.00 — f |
5.50 — |
500 B “"'.,...,, _
el |
400~ |
3.50 - - |
3.00 - |
2.50 — |
2.00 - |
1.50 - |
1.00 - |
0.50 - |

0.00 - _
| | | |

20.00 40.00 60.00 80.00

characters

Figure 19: Average number of edge decompositions found per perfect phylogeny problem.

19

000
110
101 100

Figure 20: An example trie.

can be large, we require that Insert remove any supersets of the inserted set. In other words,
we maintain the invariant that no member of the FailureStore is a proper superset of another.
The invariant reduces memory requirements as well as the number of sets examined during
DetectSubset operations. Note that removing the supersets does not affect the outcome of
subsequent DetectSubset operations. The supersets are redundant because the inserted set is a
subset of any set of which a removed superset was a subset. Nevertheless, bottom-up, right-to-
left search explores the subsets in lexicographic order, so it visits a set only after all its subsets,
and the FailureStore never contains any supersets of an inserted set. This search pattern avoids
the expense of removing supersets during Insert.

The trie implementation of the FailureStore is similar, but benefits from the fact that the
trie structure reflects, to some extent, the relation between subsets. A trie is a tree where a
subset is stored in a leaf specified as follows: Representing a subset by a bit vector, where a
bit is 1 if the corresponding element is in the subset, and 0 otherwise, we locate a particular
subset by starting at the root and, at the nth level, choosing the left subtree if the nth bit
is 1 and the right subtree otherwise. Figure 20 shows a trie representing the set of subsets
{{},{0},{0,2},{0,1}}, which, using bit vector representation, is {000, 100, 101, 110}.

We can exploit the structure of the trie for detecting subsets with the following observation:
If the first bit of a set is 0, then all of its subsets must be in the right subtrie. This applies at
each level of the trie, so that, in effect, we only need to search a trie with height equal to the
number of elements in the set, instead of the total number of characters. We believe that the
trie has a significant advantage because large sets of characters are typically incompatible, so
bottom-up search usually calls DetectSubset with small sets. Searching for supersets of a set
may be expensive, because we must search a trie with height equal to the number of elements
absent from the set, which may be large, although not as large as the number of sets in the
FailureStore. But, as discussed above, bottom-up, right-to-left search obviates this operation.

We base our final decision on timing our benchmark suite. Figures 21 and 22 show the
results on an HP712/80. The trie has approximately a 30% performance advantage for large
problems. In the parallel implementation, however, we expect the margin to be larger because
we can no longer guarantee to visit sets in lexicographic order, so removing supersets during
Insert is necessary. '

5 Parallel Implementation

Finally, we present the design of our parallel implementation.

20

seconds x 103

30.00
28.00
26.00
24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.00

I

T

|

|

20.00

40.00

60.00

80.00

characters

Figure 21: Performance of trie and linked list FailureStores.

21

seconds

| | | |
20.00 40.00 60.00 80.00

characters

Figure 22: Performance of trie and linked list FailureStores on a logarithmic scale.

22

tasks

1e+07 .

I

le+06 -

I

1le+05

le+04 —

I

le+03 -

1le+02 | | | | 7]
20.00 40.00 60.00 80.00

characters

Figure 23: Average number of tasks, logarithmic scale.

5.1 Sources of Parallelism

We identify two sources of parallelism in the program. The top level of parallelism comes
from the character compatibility problem: solving the perfect phylogeny problem for many
different subsets of the character set. These tasks are independent, except for their effect on the
FailureStore. The second, lower level of parallelism is within the perfect phylogeny procedure,
which uses a divide-and-conquer algorithm. After a vertex decomposition, for example, the
procedure recurses on the two subsets, which are two independent tasks.

Our implementation takes advantage of the first source of parallelism only, because we
believe that the number of tasks is large enough to sustain a large number of processors. Figure
23 shows the average number of subsets explored for various problem sizes, and Figure 24
shows the average number of subsets that were not resolved in the FailureStore. Even for
the moderate-sized problems shown, the number of tasks is enormous, and appears to grow
exponentially with the number of characters, as expected. Because we want to solve problems
with hundreds or thousands of characters, the parallelism at this level seems to be sufficient.

We associate each task with some computation and some data. The data required for the
perfect phylogeny problem is the subset of characters and the character vectors for the original
set of species. Because each task uses the character vector for each species, we replicate these

23

tasks

5= l ' ' L= characters
20.00 40.00 60.00 80.00

Figure 24: Average number of tasks not resolved in the FailureStore, logarithmic scale.

24

seconds/task x 100

750.00 - ' ' ' T1tr

700.00 — n

650.00 - N

600.00 - -

550.00 — -

500.00

450.00 N

T

400.00 -

350.00 —
| ! | |

20.00 40.00 60.00 80.00

characters

Figure 25: Average time per task.

data on each processor. Therefore, communicating a task between processors only requires
sending the subset of characters. We represent a subset by a bit vector, requiring one bit for
every character in the original set and a small amount of header data. Even a 100-character
problem needs only five 32-bit words for each task.

Figure 25 shows that the average time per task is on the order of 500us for an HP712/80.
We take advantage of the coarseness of the tasks in designing our implementation.

The first step in producing a parallel implementation from our sequential one is modifying
the search procedure to take advantage of the parallelism among tasks. We replace the recursive
procedure with an iterative procedure that uses a task queue, and rely on the task queue to
distribute the tasks among the processors. We want the task queue to provide dynamic load
balancing because the search tree, as well as the amount of computation required for each node,
is unknown until runtime. In addition, we prefer a distributed task queue, so that the queue
is not a performance bottleneck. The task queue data structure from Multipol [10] meets our
requirements, and is our choice for our implementation.

Each processor executes a loop consisting of dequeuing a task from the task queue, executing
the task, and enqueuing any new tasks generated. A task corresponds a particular subset of
characters, and executing the task consists of determining if the subset is compatible. In the
sequential implementation, we used the FailureStore to improve performance. To complete the

25

parallel implementation, we implement the FailureStore as a distributed data structure.

5.2 Distributing the FailureStore

Section 4 showed the importance of the FailureStore to sequential performance. We would
like the parallel implementation to reap similar benefits. In this section, we evaluate three
approaches to implementing the FailureStore.

The simplest approach is to keep a standard trie on each processor. Insert operations
insert into this trie, and DetectSubset searches only the local trie. This implementation may
lead to redundant work, but it is correct. Processors do not use information about failures
discovered by other processors, so a processor may call the perfect phylogeny procedure on a
subset which has a subset that another processor has already determined to be a failure. The
perfect phylogeny procedure proceeds unaffected, however, and determines that the subset is
a failure, so the processor obtains the correct answer and does not explore that branch of the
search tree further. The cost of the lack of information is no more than the cost of a call to the
perfect phylogeny procedure.

To reduce the amount of redundant work, the processors must communicate information
from their FailureStores to other processors. One method is to periodically send a random
element from the local trie to another processor. The primary feature of the randomized
method is lack of synchronization.

An alternative method is to periodically synchronize and communicate all information in
local tries to all processors in a global reduction. This method has a tradeoff between com-
pleteness of information on each processor and overhead: Communicating more often requires
more time for communication and synchronization, but gives the processors more information
so that they can increase the number of subsets resolved in the FailureStore, therefore reducing
computation time.

We now present timing results for each of the three implementations. The benchmarks
are 40 character sections of the same mitochondrial third positions in the D-loop region [4].
Figure 26 shows the times on a 32-node CM-5 and Figure 27 shows the speedups. Note that
for small numbers of processors, the unshared and random techniques achieved superlinear
speedup. This is a common effect in search problems, and results from the fact that with more
than one processor, some failures may be found more quickly, allowing other processors to avoid
computation that is necessary in the sequential case. Nevertheless, the synchronizing combining
method seems to perform best as the number of processors increases.

Figure 28 shows the fraction of subsets that were resolved in the FailureStore. The synchro-
nizing method maintains a high rate, but the other two methods suffer from a lack of complete
information on each processor, resulting in a higher overall time.

Our goal in this section was to use parallel processing to solve large problems in a reasonable
amount of time. Unfortunately, we face two obstacles. First, the efficiency of our implementa-
tion is only about 2/3 for 32 processors, and it seems to be decreasing. For larger problems,
however, we expect the efficiency to be higher because of the abundance of tasks. We could not
plot a speedup curve for larger problems, however, because of memory limitations on the CM5.

The second obstacle is memory limitations. The three implementations of the FailureStore
replicate the data on the processors, which restricts the maximum problem size we can solve.
Perhaps a truly distributed FailureStore would remedy the problem.

26

seconds

320.00 - L
300.00 —sync
280.00 B
260.00 — |
240.00 — B
220.00 a
200.00 — B
180.00 |
160.00
140.00
120.00 —
100.00

80.00 —

60.00 —

40.00 -

20.00 -

Processors
0.00 10.00 20.00 30.00

Figure 26: Time vs. processors.

27

speedup

32.00
30.00 7 Tsyne”
28.00 . — ideal
26.00 J
24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00
8.00
6.00 —
4.00 -
2.00 -

0.00 | l |
0.00 10.00 20.00 30.00

I
|

I
|

I

I

processors

Figure 27: Speedup vs. processors.

28

fraction resolved in FailureStore

I T I none

1.00

0.90

0.80 — -
0.70 —

0.60 -

0.50 - _

0.40 _

0.30

I
L

0.20 -

0.10 — -

0.00 - -
1 | r |

0.00 10.00 20.00 30.00

processors

Figure 28: Fraction of subsets resolved in the FailureStore vs. processors.

29

6 Conclusion

We have described the design and implementation of a parallel algorithm for solving the phy-
logeny problem. The journey has been difficult, each step has been instructive.

The first step was sequential the algorithm. We use the character compatibility method,
which searches a large set to find the best phylogeny. We introduced techniques for bounding
this search, and showed their substantial impact on performance.

Next, we considered the perfect phylogeny problem, a subproblem of character compatibility.
Our implementation uses the algorithm of of Agarwala and Fernindez-Baca [1], implemented
according to a suggestion from Lawler [6]. We believe our description and proof of correctness
of the algorithm to be simpler than that in the original paper [1]. We also examined several
aspects of the performance of our implementation.

Guided by our measurements of the sequential implementation, we developed an initial
parallel version based on two data structures. The task queue from Multipol [10] distributes
the tasks and maintains load balance, and the FailureStore, represented as a distributed trie,
manages the sharing of information among processors. We studied three implementations of the
FailureStore and found that the implementation that synchronized periodically to communicate
information to all processors was the best.

Our goal throughout was to solve larger problems in a reasonable amount of time. Our
parallel implementation achieves reasonable speedups for problems which fit in the memory
of a single processor, and we expect better efficiency for larger problems. Section 5 suggested
several improvements which we plan to implement in the near future. With the power of parallel
computing, solving large phylogeny problems is finally within reach.

References

[1] R. Agarwala and D. Ferndndez-Baca. A polynomial-time algorithm for the perfect phylogeny
problem when the number of character states is fixed. In Proceedings of the 34th Annual
Symposium on the Foundations of Computer Science, pp. 140-147, 1993.

(2] H. Bodlaender, M. Fellows, and T. Warnow. Two strikes against perfect phylogeny. In Pro-
ceedings of the 19th International Colloquium on Automata, Languages, and Programming,
pp. 273-283, Springer-Verlag, Lecture Notes in Computer Science, 1992.

[3] J. Felsenstein. Numerical methods for inferring evolutionary trees. Q. Rev. Biol, 57:379-404
1982.

)

[4] M. Hasegawa, H. Kishino, K. Hayasaka, and S. Horai. Mitochondrial DNA evolution in
primates: transition rate has been extremely low in the lemur. J. Molecular Evolution,
31(2):113-21, 1990.

(5] J.M. Hullot. Associative-commutative pattern matching. 5th IJCAI, Tokyo, Japan, 1979.
[6] E.L. Lawler. Personal communication. August 1993.

[7] W.J. Le Quesne. A method of selection of characters in numerical taxonomy. In Syst. Zool.,
18:201-205, 1969.

(8] F.R. McMorris, T.J. Warnow, and T. Wimer. Triangulating vertex colored graphs. In
Proceedings of the 4th Annual Symposium on Discrete Algorithms, Austin, Texas, 1993.

30

(9] J. Vuillemin. A data structure for manipulating priority queues. C. ACM, 21(4), 1978.

[10] K. Yelick, S. Chakrabarti, E. Deprit, J. Jones, A. Krishnamurthy and C. Wen. Data struc-
tures for irregular applications. DIMACS Workshop on Parallel Algorithms for Unstructured
and Dynamic Problems, 1993.

31

